Abstract

Martensitic transformations in Ni-rich NiTi shape memory alloys take place as multistage transformations. In Ni-rich alloys with an austenitic B2 matrix, coherent Ni{sub 4}Ti{sub 3} precipitates form from thermo-mechanical processing and affect the sequence of the martensitic transformation. Any composition inhomogenieties that develop during the evolution of the Ni{sub 4}Ti{sub 3} precipitates will have a large influence on the multistage martensitic transformations, since the martensite start temperature, M{sub s}, is strongly dependent on the Ni concentration of the matrix. Since concentration differences on the order of 0.5 at% are sufficient to influence the transformation, providing sufficiently accurate concentration profiles for meaningful structure-property correlations is a challenging experiment. This investigation employs elemental mapping by energy-filtered transmission electron microscopy (EFTEM) to attempt to measure the concentration profiles at these precipitate-matrix interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call