Abstract

Electron energy loss spectroscopy (EELS) and energy dispersive X-ray spectroscopy (EDXS) can be used to obtain elemental maps from thin biological samples in the analytical electron microscope. The EELS is particularly sensitive for the low-atomic-number elements, including C, N, and O, as well as other elements with favorable ionization cross-sections, such as Fe. The EDXS is useful for a complementary range of atoms, such as P, S, K, and Ca. A system is described for obtaining elemental distributions in an analytical electron microscope operated in the scanning transmission mode at 100-200 keV beam energy. The spatial resolution is typically limited to 10-20 nm when a conventional source is used. A satellite microcomputer controls acquisition of EELS and EDXS data from successive pixels in an image. These data are processed "on-the-fly" by a host computer to remove the noncharacteristic background intensity. Resulting images are stored on disk and can be analyzed by means of an image display system controlled by interactive software. The technique is demonstrated with elemental maps from two samples: alveolar macrophages containing respirable particles; and pancreatic beta cells that secrete insulin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call