Abstract

Minor elements significantly influence the properties of stainless steel. In this study, a laser-induced breakdown spectroscopy (LIBS) technique combined with a back-propagation artificial intelligence network (BP-ANN) was used to detect nickel (Ni), chromium (Cr), and titanium (Ti) in stainless steel. For data pre-processing, cubic spline interpolation and wavelet threshold transform algorithms were used to perform baseline removal and denoising. The results show that this set of pre-processing methods can effectively improve the signal-to-noise ratio, remove the baseline of spectral baseline, reduce the average relative error, and reduce relative standard deviation of BP-ANN predictions. It indicates that BP-ANN combined with pre-processing methods has promising applications for the determination of Ni, Cr, and Ti in stainless steel with LIBS and improves prediction accuracy and stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.