Abstract

Parasite infections are ubiquitous and their effects on hosts could play a role in ecosystem processes. Ecological stoichiometry provides a framework to study linkages between consumers and their resource, such as parasites and their host, and ecosystem process; however, the stoichiometric traits of host-parasite associations are rarely quantified. Specifically, it is unclear whether parasites' elemental ratios closely resemble those of their host or if infection is related to host stoichiometry, especially in vertebrate hosts. To answer such questions, we measured the elemental content (%C, %N, and %P) and molar ratios (C:N, C:P, and N:P) of parasitized and unparasitized Gasterosteus aculeatus (three-spined stickleback) and their cestode parasite, Schistocephalus solidus. Host and parasite elemental content were distinct from each other, and parasites were generally higher in %C and lower in %N and %P. Parasite infections were related to host C:N, with infected hosts being lower in C:N. Parasite elemental content was independent of their host, but parasite body mass and parasite density were important drivers of parasite stoichiometry. Overall, these potential effects of parasite infections on host stoichiometry along with parasites' distinct elemental compositions suggest parasites may further contribute to differences in how individual hosts store and recycle nutrients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.