Abstract

Contaminant inputs to the lower Great Lakes (LGL) have decreased since the 1960s and 1970s, but elemental contaminants continue to enter the LGL watershed at levels that are potentially deleterious to migratory waterfowl. Mute swans (Cygnus olor) using the LGL primarily eat plants, are essentially nonmigratory, forage exclusively in aquatic systems, and have increased substantially in number in the last few decades. Therefore, mute swans are an ideal sentinel species for monitoring elemental contaminants available to herbivorous and omnivorous waterfowl that use the LGL. We investigated hepatic concentrations, seasonal dynamics, and correlations of elements in mute swans (n = 50) collected at Long Point, Lake Erie, and Lake St. Clair from 2001 to 2004. Elements detected in liver at levels potentially harmful to waterfowl were copper (Cu) [range 60.3 to 6063.0 μg g(-1) dry weight (dw)] and selenium (SE; range 1.6 to 37.3 μg g(-1) dw). Decreases in aluminum, Se, and mercury (Hg) concentrations were detected from spring (nesting) through winter (nonbreeding). Elemental contaminants may be more available to waterfowl during spring than fall and winter, but study of seasonal availability of elements within LGL aquatic systems is necessary. From April to June, 68% of mute swans had Se levels >10 μg g(-1), whereas only 18% of swans contained these elevated levels of Se from July to March. An increase in the number of mute swans at the LGL despite elevated levels of Cu and Se suggests that these burdens do not substantially limit their reproduction or survival. Se was correlated with Cu (r = 0.85, p < 0.01) and Hg (r = 0.65, p < 0.01), which might indicate interaction between these elements. Some element interactions decrease the toxicity of both elements involved in the interaction. We recommend continued research of elemental contaminant concentrations, including detailed analyses of biological pathways and element forms (e.g., methylmercury) in LGL waterfowl to help determine the role of element interactions on their toxicity in waterfowl.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call