Abstract
Consumption of rice-based foods provides essential nutrients required for infants and toddlers’ growth. However, they could contain toxic and excess essential elements that may affect human health. The study aims to determine the composition of rice-based baby foods in the USA and outside and conduct a multiple-life stages probabilistic exposure and risk assessment of toxic and essential elements in children. Elemental concentrations were measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in thirty-three rice-based baby foods. This includes 2 infant formulas, 11 rice baby cereals, and 20 rice snacks produced primarily in the United States, China, and other countries. A probabilistic risk assessment was conducted to assess risks of adverse health effects. Results showed that infant formula had higher median concentrations of selenium (Se), copper (Cu), zinc (Zn), sodium (Na), magnesium (Mg), calcium (Ca), and potassium (K) compared to rice baby cereal and rice snacks. On the contrary, rice snacks had the highest median concentration of Arsenic (As) (127 μg/kg) while rice baby cereals showed the highest median concentration of Cd (7 μg/kg). A higher lifetime estimated daily intake was observed for samples manufactured in the USA compared to those from China and other countries. Hazard quotient (HQ < 1) values were suggestive of minimal adverse health effects. However, lifetime carcinogenic risk analysis based on total As indicated an unacceptable cancer risk (>1E-04). These findings show a need for ongoing monitoring of rice-based foods consumed by infants and toddlers as supplementary and substitutes for breast milk or weaning food options. This can be useful in risk reduction and mitigation of early life exposure to improve health outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.