Abstract

During the lake deep drilling campaign PASADO in 2008, more than 500 m of lacustrine sediment was recovered from the maar lake Laguna Potrok Aike, Argentina. The major element composition was assessed at high resolution with an ITRAX X-ray fluorescence core scanner. The sharp boundary between a carbonate-bearing and a carbonate-free depositional system occurs at 13.5 cal. ka BP and marks the transition from glacial to Late Glacial sediments. Holocene and Late Glacial sediments can be distinguished by elements that are indicative of organic matter (Br, Cl) or calcite (Ca). Glacial sediments are characterized by elements that represent terrigenous clastic input (Fe, Ti, K, Si). Trace elements (Mn, Rb, V, Ni) accumulate with the bulk of lithogenic elements indicating frequent oxic conditions and rare diagenetic remobilization. Based on principal component analysis we interpret the scores of the first principle component as a summarizing indicator for climate-related variations of depositional conditions. During the Holocene climate changes mirror the total inorganic carbon profile, which was used as a proxy for lake-level reconstructions of the past 16 ka in previous studies. High scores in the first principle component probably reflect periods of increased chemical over mechanical weathering and developing soils and vegetation cover limiting sediment availability for erosional processes. These intervals often also show increases in total organic carbon values and total organic carbon/total nitrogen ratios, which are associated with periods of Antarctic warming in the last glacial. Geochemical variations of the clastic glacial sediments are explored by excluding carbonate-bearing sediments from principal component analysis. Although, in this lake, Ca is a purely clastic signal in carbonate-free sediments, it does not correlate with the bulk of indicators for terrigenous input. Instead Ca dominates a second principal component together with Sr. This component mainly distinguishes coarse grained layers from the remaining sediment. The main provenance of this coarse-grained material is suggested to be a basalt outcrop at the western shore. Low lake levels, high waves and flash-flood events may have increased the availability of basaltic sand during extremely cold, arid and windy conditions. High wind speeds and lack of vegetation may have facilitated the increased transport of coarse-grained material into the center of Laguna Potrok Aike. Decreases in the second principal component can be observed during Oxygen Isotope Stage 2 when increased dust input has been found in cores from Laguna Potrok Aike, the Southern Ocean and Antarctica.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call