Abstract
Land use influences surface water quality, often alleviating stoichiometric constraints on primary production and altering biogeochemical cycling. However, land use effects on nutrient content and potential trace metal accumulation in aquatic plants remain unclear, and high concentrations of metals and altered nutrient ratios could impact the health of herbivores and detritivores. We tested for land use effects on nutrient and trace metal accumulation in a widespread riverine macrophyte, Podostemum ceratophyllum, collected from 91 locations from Georgia to Maine, USA in 2014–2016. We quantified carbon (C), nitrogen (N), phosphorus (P), their molar and mass ratios, N and C stable isotopes, and 17 additional elements in dried plants collected from each location to estimate relationships between plant tissue content and watershed land use, which we quantified as agriculture, forest, and development. Decreasing forest cover was correlated with increasing δ15N, Mg, Mn, and P in Podostemum tissue. Increasing urban development was correlated with increasing δ15N, Mg and P, while increasing agriculture was correlated with a decrease in C: P and the concentrations of multiple metals, along with increases in P, Mg and δ15N. Decreases in ratios of N: P and C:P with increasing agriculture and urban development in the watershed indicate more rapid P storage relative to C and N in plant tissue, and increased resource quality of the plant to consumers in these watersheds. We also observed potentially toxic dietary concentrations of some trace metals (B, Cd, Tl, Zn) in plant tissue which could be related to the plant's natural herbivory defense system or to land use. We conclude that land use influences the elemental composition of P. ceratophyllum, and potentially the quality and toxicity of the plant to herbivores and detritivores in eastern North American rivers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.