Abstract

The soils of Chernevaya taiga (tallgrass fir-aspen hemiboreal rainforest) have high fertility in comparison with oligotrophic analogs formed in boreal taiga. We have studied humic acids isolated from the soils of Chernevaya and oligotrophic taiga in the Novosibirsk, Tomsk, Kemerovo and the Altai regions of Russia and for the first time the structural and molecular composition of humic acids was determined using 13C CP/MAS and 1H-13C HETCOR NMR spectroscopy. According to data obtained in this study, up to 48% of aromatic compounds accumulate in the soils of Chernevaya taiga, which is higher than in the oligotrophic taiga and comparable with this rate of steppe Chernozems. In the course of active processes of transformation of organic matter, a significant number of aromatic fragments accumulates in the middle horizons of soil profiles. Using 13C CP/MAS spectroscopy, it was possible to identify the main structural fragments (aliphatic and aromatic) that formed in humic acids of the Chernevaya taiga. The HETCOR experiment made it possible to accurately determine the boundaries of chemical shifts of the main groups of structural fragments of humic acids. Our results demonstrate that the stabilization of organic compounds occurs in the soil of the Chernevaya taiga, which leads to the resistance of organic matter to biodegradation that is not typical for benchmark soils of boreal environments.

Highlights

  • The boreal forests of Russia are one of the largest continuous forests on Earth, covering 20% of the world’s forest area and 70% of the world’s boreal forest area [1]

  • We have studied humic acids isolated from the soils of Chernevaya and oligotrophic taiga in the Novosibirsk, Tomsk, Kemerovo and the Altai regions of Russia and for the first time the structural and molecular composition of humic acids was determined using 13C CP/MAS and 1H-13C HETCOR NMR spectroscopy

  • According to data obtained in this study, up to 48% of aromatic compounds accumulate in the soils of Chernevaya taiga, which is higher than in the oligotrophic taiga and comparable with this rate of steppe Chernozems

Read more

Summary

Introduction

The boreal forests of Russia are one of the largest continuous forests on Earth, covering 20% of the world’s forest area and 70% of the world’s boreal forest area [1]. The direction in which carbon stocks in soils will change will depend on how the mechanisms of soil organic matter stabilization respond to warming, an increase in nitrogen input and the amount of plant residues in the soil [4]. In this regard, studies of the stabilized organic matter of forest mineral soils in Russia are of great interest for a molecular understanding of the forms of storage of carbon compounds [5,6]. The last surviving old-growth forests are located in the areas of the Russian rainforests

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.