Abstract

This study aims to shed light on the elemental and mineralogical mechanisms controlling the storage and flow performances of tight conglomerates. This is achieved through the application of Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectrometer (EDS), TESCAN Integrated Mineral Analyzer (TIMA), and geophysical logging data.The findings suggest that augmenting the Mg and CaO content in silicates can markedly enhance the storage capacity of tight conglomerates within the Upper Wuerhe Formation. Chlorite exerts a positive influence on the evolution of reservoir porosity, whereas an escalation in Na content does not foster the development of reservoirs with superior physical attributes. A reduction in the chemical index of alteration (CIA) facilitates the creation of a more expansive pore space, while an elevation in the index of component variation (ICV) augments porosity and diminishes mud content, albeit it may also curtail oil content. It is pertinent to note that an increase in ICV is not invariably advantageous. The emergence of orthoclase results in a decrease in porosity and an enhancement in permeability, whereas the progression of kaolinite adversely affects reservoir porosity.The conclusion may yield significant insights for hydrocarbon exploration in these regions, as well as in reservoirs exhibiting analogous lithologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.