Abstract
The snowpack is an important source of water for many Andean communities. Because of its importance, elemental and mineralogical composition analysis of the Andean snow is a worthwhile effort. In this study, we conducted a chemical composition analysis (major and trace elements, mineralogy, and chemical enrichment) of surface snow sampled at 21 sites across a transect of about 2,500 km in the Chilean Andes (18–41°S). Our results enabled us to identify five depositional environments: (i) sites 1–3 (in the Atacama Desert, 18–26°S) with relatively high concentrations of metals, high abundance of quartz and low presence of arsenates, (ii) sites 4–8 (in northern Chile, 29–32°S) with relatively high abundance of quartz and low presence of metals and arsenates, (iii) sites 9–12 (in central Chile, 33–35°S) with anthropogenic enrichment of metals, relatively high values of quartz and low abundance of arsenates, (iv) sites 13–14 (also in central Chile, 35–37°S) with relatively high values of quartz and low presence of metals and arsenates, and v) sites 15–21 (in southern Chile, 37–41°S) with relatively high abundance of arsenates and low presence of metals and quartz. We found significant anthropogenic enrichment at sites close to Santiago (a major city of 6 million inhabitants) and in the Atacama Desert (that hosts several major copper mines).
Highlights
We found significant enrichment of Ni, Mn, Ti, V, Co, Cu, Zn, Zr, Ba and Pb at site (Valle Nevado) and at site (La Parva); of Fe, Rb and Mo at sites 9–11 (Valle de Maipo, Valle Nevado, and La Parva); and of Sr and Cr at site 10 (Valle Nevado)
Our results have important implications for many Andean communities, especially in central Chile (33–37°S), where we found significant anthropogenic enrichment
The very good correlation between concentrations of both Cu and Mo is consistent with the fact that major mineral deposits in the Andes contain both elements
Summary
Sampling was conducted during consecutive Austral winters (2015 and 2016) at 21 sites across a transect in the Chilean Andes, from Putre to Volcán Osorno; see Table 1 and Fig. 1 for further details. Sampling was carried out at the end of the accumulation season. Sampling sites were selected to represent broad regions at locations with no known local aerosol sources. Two samples from the surface layer (up to 15–20 cm depth) and separated by 1–2 m distance were collected. Samples ranged from 1 to 2 kg each
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.