Abstract

AbstractRiverine total suspended sediment (TSS) at the lower reach section of the Zengjiang River, a low‐turbidity river in the southern China, was sampled on a 4‐week basis from March 2002 to February 2003. The gross TSS was divided into sedimentary and suspended fractions (SED and SUS) by the sedimentation method. Organic carbon and nitrogen, 14C and 13C were analysed using an elemental analyser and accelerator mass spectrometer respectively. The results show that particulate organic carbon (POC) yield is 0·8 × 106 g km−2 year−1 in the Zengjiang River drainage basin, which is about one‐tenth of that in the Zhujiang (Pearl) River drainage basin. The C/N ratio demonstrates that aquatic biomass is the major contributor to POC in the Zengjiang River. The average share of aquatic biomass in the SUS‐fraction POC and SED‐fraction POC is about 88·89% and 62·76% respectively, with a substantial seasonal variation. δ13C values of SUS‐fraction POC (−26·56 to − 22·89‰) is slightly lighter than that of SED‐fraction POC (−25·05 to − 22·20‰), indicating that the contribution of aquatic biomass to δ13C values is more pronounced in the SUS‐fraction POC than in the SED‐fraction POC. The ‘bomb’–14C signature is not detected in the POC of Zengjiang River, and the contribution from geological organic carbon is very little. Δ14C values of the SED‐fraction POC vary from − 44 to − 223‰, and the Δ14C values of the SUS‐fraction POC vary from − 33 to − 165‰. For most paired samples, the SED‐fraction POC is generally more depleted in 14C than that of its counterpart SUS‐fraction POC. Compared with other small mountainous rivers, the 14C enrichment of POC in the Zengjiang River indicates slight drainage basin erosion. Copyright © 2006 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.