Abstract

Abstract Detailed chemical analyses of M dwarfs are scarce but necessary to constrain the formation environment and internal structure of planets being found around them. We present elemental abundances of 13 M dwarfs (2900 < T eff < 3500 K) observed in the Subaru/IRD planet search project. They are mid- to late-M dwarfs whose abundance of individual elements has not been well studied. We use the high-resolution (∼70,000) near-infrared (970–1750 nm) spectra to measure the abundances of Na, Mg, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Sr by the line-by-line analysis based on model atmospheres, with typical errors ranging from 0.2 dex for [Fe/H] to 0.3–0.4 dex for other [X/H]. We measure radial velocities from the spectra and combine them with Gaia astrometry to calculate the Galactocentric space velocities UVW. The resulting [Fe/H] values agree with previous estimates based on medium-resolution K-band spectroscopy, showing a wide distribution of metallicity (−0.6 < [Fe/H] < +0.4). The abundance ratios of individual elements [X/Fe] are generally aligned with the solar values in all targets. While the [X/Fe] distributions are comparable to those of nearby FGK stars, most of which belong to the thin-disk population, the most metal-poor object, GJ 699, could be a thick-disk star. The UVW velocities also support this. The results raise the prospect that near-infrared spectra of M dwarfs obtained in the planet search projects can be used to grasp the trend of elemental abundances and the Galactic stellar population of nearby M dwarfs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.