Abstract

Abstract We present chemical abundances of red giant branch (RGB) stars in the dwarf spheroidal (dSph) satellite system of Andromeda (M31), using spectral synthesis of medium-resolution (R ∼ 6000) spectra obtained with the Keck II telescope and Deep Imaging Multi-Object Spectrometer spectrograph via the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo survey. We coadd stars according to their similarity in photometric metallicity or effective temperature to obtain a signal-to-noise ratio (S/N) high enough to measure average [Fe/H] and [α/Fe] abundances. We validate our method using high S/N spectra of RGB stars in Milky Way globular clusters, as well as deep observations for a subset of the M31 dSphs in our sample. For this set of validation coadds, we compare the weighted average abundance of the individual stars with the abundance determined from the coadd. We present individual and coadded measurements of [Fe/H] and [α/Fe] for stars in 10 M31 dSphs, including the first [α/Fe] measurements for And IX, XIV, XV, and XVIII. These fainter, less massive dSphs show declining [α/Fe] relative to [Fe/H], implying an extended star formation history (SFH). In addition, these dSphs also follow the same mass–metallicity relation found in other Local Group satellites. The conclusions we infer from coadded spectra agree with those from previous measurements in brighter M31 dSphs with individual abundance measurements, as well as conclusions from photometric studies. These abundances greatly increase the number of spectroscopic measurements of the chemical composition of M31's less massive dwarf satellites, which are crucial to understanding their SFH and interaction with the M31 system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.