Abstract

Iron is an essential micronutrient for plant growth and development, involved in key cellular processes. However, the distribution of Fe in plant tissues is still not well known. In the so-called Fe chlorosis paradox, leaves of fruit trees grown in the field usually have high concentrations of Fe but still are Fe-deficient. Leaves of the Prunus rootstock GF 677 (P. dulcis × P. persica) grown in hydroponics have been used to carry out two-dimensional (2-D) nutrient mapping by synchrotron radiation-induced X-ray fluorescence. Iron-deficient leaves accumulated more Fe in the midrib and veins, with Fe concentration being markedly lower in mesophyll leaf areas. The effects of Fe deficiency and Fe re-supply on leaf chlorophyll concentration and on the distribution of Fe and other nutrients within different plant tissues have been investigated in the same plants. After Fe re-supply, leaf Fe concentrations increased largely in all leaf types. However, whereas re-greening was almost completely achieved in apical leaves, in some expanded leaves the increase in chlorophyll concentration was only moderate. Therefore, after Fe re-supply Fe-deficient expanded leaves of the Prunus rootstock GF 677 had significant increases in Fe concentration but were still chlorotic. This is similar to what occurs in leaves of peach trees in field conditions, opening the possibility that this system could be used as a model to study the Fe chlorosis paradox.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.