Abstract
A new angular-dependent potential (ADP) of Ni–Rh system was obtained by fitting the experimental data and first principle data, and the effectiveness of the potential was tested. Then, the element segregation characteristics and thermal stability of Ni–Rh nanoparticles were studied by Monte Carlo and molecular dynamics. The results show that the chemical ordering pattern of Ni1-xRhx nanoparticles is the result of the competition of surface energy, strain energy, interface energy and bond energy. With the increase of x, Rh atoms are preferentially segregated to the surface and dispersed. The concentration of Rh atoms in the surface decreases with the increase of size or temperature. With the increase of x, the melting point of Ni1-xRhx nanoparticle first gradually increased, reached the highest near x = 0.1, then gradually decreased, reached the lowest near x = 0.5, and then gradually increased. The above results theoretically explain the reason why doping a small amount of Rh can improve the coking-resistance and sintering-resistance ability of Ni catalyst.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.