Abstract

Element partitioning between olivine and silicate melt has been investigated at pressures 1–14 GPa, by using a 6–8 type multi-anvil high pressure apparatus. In order to observe systematics in the partitioning of trivalent ions, Li was added to the starting materials in order to increase the concentration of trivalent ions in olivine. With increasing pressure, it was found that partition coefficients of most of the elements gradually decreased. Trivalent ions generally showed parabolic pattern on partition coefficient — ionic radius diagram. When pyrolite-like material was used as the starting material, partition coefficient of Al, DAl, gradually increased with increase in pressure while the partition coefficients of the other elements decreased, and the DAl deviated from the parabolic pattern of other trivalent ions. The deviation of DAl from the D pattern of the other trivalent ions was also found when olivine was employed as main component of the starting material. This result may be ascribed to the compositional change of coexisting silicate melt with increase in pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.