Abstract
Abstract Hydrothermal activities occurred in the Yangtze block, South China, and affected the process of black shale sedimentation in the early Cambrian. Their specific influences, such as the sources, sedimentary environment, and mineralization, have not yet been revealed. Fortunately, the influences are explained through the geochemistry comparison of different wells FY1, XJ1, HY1, and XA1 in northwestern Hunan. The outcomes of the tectonic setting, distinguishable by element indicators, are disorganized. This is caused by the variable element composition, sedimentary recirculation of material source, and hydrothermal materials. FY1, the closest well to Zhangjiajie where Ni–Mo ores were formed by hydrothermal sedimentation, has more different features on the elemental geochemistry, but many indexes still indicate that it is normal sediments. XA1, which is far from the other wells and deposited in the deep-water basin, has significantly more differences in geochemical properties and shows more about normal marine deposition. XJ1 and HY1 are intermediate between them. Based on these wells, the hydrothermal contribution to the black shale sedimentation is not significant. However, some contents of trace and rare earth elements change widely because hydrothermal materials can diffuse and deposit over long distances. The concentration of Ag, As, Ba, Mo, Ba, U, and V generally has dozens of times higher than that of Upper Continental Crust. The early Cambrian environment was primarily anoxic/euxinic with enough sulfur, which is beneficial for enriching metal elements and organic matter. The sequence FY1, XJ1, HY1, and XA1 in turn has the same performance on the distance with Zhangjiajie, different intervals of suboxic environment and element enrichment, and hydrothermal-fluid-addition Ni abundance. Therefore, hydrothermal processes indeed provide materials for element enrichment and support the reducing environment, but the impact of hydrothermal activity decreases on the plane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.