Abstract

AbstractIn the present work, the element‐free Galerkin (EFG) method is applied to a continuum solidification model that calculates thermosolutal convection and macrosegregation during dendritic solidification of multicomponent alloys. Simulations for directional solidification of a binary Pb–Sn alloy and a Ni‐base quaternary alloy have been performed in a rectangular two‐dimensional domain. In both calculations, the alloy melt is cooled from below and the growth of the mushy zone is followed in time. The formation of macrosegregation defects known as ‘freckles’ has been successfully simulated using the meshless EFG method. A varying degree of sensitivity of results to the number and distribution of meshfree particles was obtained. The potential of the method for a broader range of solidification models is discussed. Copyright © 2009 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.