Abstract

The generalized regularized long wave (GRLW) equation is an important nonlinear equation for describing a large number of physical phenomena, for examples, the shallow water waves and plasma waves. In this study, numerical approximation of the GRLW using the element-free improved moving least-squares Ritz (IMLS-Ritz) method is performed. In the solution procedure, the IMLS approximation is employed to reduce the number of unknown coefficients in the trial functions. The Ritz minimization procedure is then used to derive the final algebraic equation system through discretizing the constructed energy formulation of the nonlinear GRLW equation. Time difference technique and Newton-Raphson method are adopted to solve the nonlinear equation system. Numerical experiments are conducted on the final form of the governing equation system to demonstrate the accuracy and efficiency of the element-free IMLS-Ritz method by comparing the computed IMLS-Ritz results with the existing available analytical solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.