Abstract

AbstractVolcanoes play an important role in the global cycling of elements by providing a pathway from the deep Earth to its surface. Here, we have constrained the flux to the environment for most elements of the periodic table for the passively degassing, crater lake-hosting Kawah Ijen volcano in the Indonesian arc. Our results indicate that emissions of Kawah Ijen are dominated by acid water outflow, especially for the ligands (Cl, F, Br), with active fumaroles contributing significant (semi)metals (e.g. Se, As, Sb, Hg), as well as C and S. The compositional signature of emissions from Kawah Ijen is similar to that of major volcanic emitters such as Etna, but element fluxes are smaller. This result provides the prerequisite foundation for extrapolating a small set of measured volcanic gas emissions to a global volcanic flux estimate. However, the aqueous flux (i.e. seepage of volcanic hydrothermal fluids and volcano-influenced groundwater) is at least as important in terms of element release, and the consideration of the gaseous flux alone thus represents a significant underestimate of the impact of volcanoes on their environment and the contribution of volcanic hydrothermal systems to global element cycling.Supplementary material: The full datasets of water and fumarole gas chemical analyses are available at https://doi.org/10.6084/m9.figshare.c.2134359

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call