Abstract

By performing a pot experiment, the study compared leaf and litter element concentration between the dry-red soil and vertisols, and analyzed the interactive effects of soil types and species on leaf nutrient concentration and nutrient resorption efficiency. The results showed that the soil type significantly affected the concentrations of N, P, Ca, Mg, Cu, Zn, Fe and N:P in leaves as well as the concentrations of N, P, Mn and N:P in leaf litters. Concentrations of N, Mn and N:P in leaves and litters derived from the dry-red soil were significantly higher than those from the vertisols. In contrast, concentrations of P, Ca, Mg, Fe, Cu and Zn in leaves and concentration of P in litters derived from the dry-red soil were significantly lower than those from the vertisols. Leaf N concentration was 34.8% higher, and leaf P concentration was 40.0% lower from the dry-red soil compared with those from the vertisols. N, P and K showed net resorption while the other elements showed accumulating patterns when leaf was senesced. Accumulation of Ca, Mg and Mn of senesced leaves was significantly higher on the dry-red soil than on the vertisols. Species identities only significantly affected leaf N concentration. Interactions of species and soil taxonomy significantly affected nutrient concentration neither in leaves nor in leaf litters, indicating that soil taxonomy influenced plant nutrient concentration in a similar way across multiple species. The influences of soil types on plant element concentration could have further effects on litter decomposition, plant-soil nutrient feedback and biogeochemical cycle in this dry and hot valley.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.