Abstract

Ion pairs of 1,10-phenanthrolin-5,6-dione radical anion [M · ⊖Me⊕n] ·⊕(n−1) with Me⊕n = Mg⊕⊕, Ca⊕⊕, Sr⊕⊕, Zn⊕⊕, Cd⊕⊕, Pb⊕⊕ and La⊕⊕⊕ are advantageously prepared in aprotic DMF solution containing appropriate metal salts Me⊕nX⊖ by using the ‘mild’ single-electron reducing agent tetra(n-butyl)ammonium-boranate R4N⊕BH4 ⊖ . For comparison, the ‘naked’ radical anion with the largely interaction-free [K⊕(2.2.2)-cryptand]⊕ counter cation is chosen, which is formed on reduction with potassium in THF solution of (2.2.2)-cryptand. Addition of excess Na⊕[B(C6H5)4]⊖ to the reduction solution only yields a solvent-separated ion pair (M · ⊖)DMF ··· (Na⊕)DMF, whereas in the presence of multiply charged counter cations Me⊕n the respective contact ion pair radical cations [M · ⊖Me⊕n] · ⊕(n−1) are formed. Their g values decrease with increasing nuclear charge of Me⊕n and their metal-s-spin densities increase with the effective counter cation charge n⊕/rMe⊕n. The ESR /ENDOR data recorded suggest Me⊕n complexation by the δ⊖OC -COδ⊖ chelate tongs and the ion pair stability, which is modified by the dielectric properties of the solvent used, may be rationalized by the Coulombic attraction between the radical anion M · ⊖ and the counter cations Me⊕n.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call