Abstract

U 2-centers in alkali halides are neutral hydrogen atoms in interstitial lattice sites, as has been shown by EPR measurements. The hyperfine interactions with the proton and with the four nearest halogen nuclei are resolved in the EPR spectrum. In order to resolve hyperfine interactions with further nuclei of the surrounding lattice ENDOR measurements have been performed onU 2-centers in KCl at 77 °K. The analysis of the ENDOR spectra gave precise values for the hyperfine and quadrupole interaction constants of the nearest neighbour chlorine and potassium nuclei. The isotropic hyperfine constant of the chlorine neighbours is 24 times larger than that of the potassium neighbours although both nuclei are on equivalent first shell lattice positions. The hyperfine interactions of second shell potassium nuclei [(1/2, 1/2, 3/2)-position] show an unexpectedly large isotropic hyperfine constant. One expects a pure magnetic dipole-dipole interaction for the outer shell nuclei because of the concentrated hydrogen wave function. Two further chlorine shells could be approximately analysed. A theoretical estimate of the hyperfine and quadrupole interaction constants was made by orthogonalizing the 1s hydrogen wave function to the cores of the surrounding ions. If one takes into account the mutual overlap of neighbouring potassium and chlorine ions, one gets the right order of magnitude of the measured constants and a value of 10.4∶1 for the ratio of the isotropic hyperfine constants of the first shell chlorine and potassium nuclei. The relatively large isotropic constant of the second shell potassium nuclei can also be explained on this basis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.