Abstract

In this study, the dual production of valuable d-tagatose and bioethanol from lactose and cheese whey powder is presented. First, a one-pot biosynthesis involving lactose hydrolysis and d-galactose isomerization for d-tagatose production was established using crude enzymes of recombinant Escherichia coli with l-arabinose isomerase (L-AI) at 50 °C. Compared to the current enzymatic system, only L-AI was overexpressed, because of the unexpectedly thermotolerant β-galactosidase in E. coli BL21(DE3). Moreover, this high temperature rendered the d-glucose catabolism of E. coli inactive, while retaining all fermentable sugars for bioethanol fermentation. Thereafter, the mixed sugar syrup was fermented by Saccharomyces cerevisiae NL22. A total of 23.5 g/L d-tagatose and 26.9 g/L bioethanol was achieved from cheese whey powder containing 100 g/L lactose. This bioprocess not only provides an efficient method for the functionalization of byproduct whey, but also offsets the high production cost of d-tagatose and bioethanol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.