Abstract

We have found a way to analyze Edwards' density of states for static granular packings in the special case of round, rigid, frictionless grains assuming a constant coordination number. It obtains the most entropic density of single grain states, which predicts several observables including the distribution of contact forces. We compare these results against empirical data obtained in dynamic simulations of granular packings. The agreement is quite good, helping validate the use of statistical mechanics methods in granular physics. The differences between theory and empirics are mainly related to the coordination number, and when the empirical data are sorted by that number we obtain several insights that suggest an underlying elegance in the density of states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.