Abstract
The use of paper as a material for various device applications (such as microfluidics and energy storage) is very attractive given its flexibility, versatility, and low cost. Here we demonstrate that electrowetting (EW) devices can be readily fabricated on paper substrates. Several categories of paper have been investigated for this purpose, with the surface coating, roughness, thickness, and water uptake, among the most important properties. The critical parameter for EW devices is the water contact angle (CA) change with applied voltage. EW devices on paper exhibit characteristics very close to those of conventional EW devices on glass substrates. This includes a large CA change in oil ambient (90-95°), negligible hysteresis (∼2°), and fast switching times of ∼20 ms. These results indicate the promise of low-cost paper-based EW devices for video rate flexible e-paper on paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.