Abstract

We report on a calculation of the vector current contributions to the electroweak production of top quark pairs in $e^+e^-$ annihilation at next-to-next-to-leading order in Quantum Chromodynamics. Our setup is fully differential and can be used to calculate any infrared-safe observable. The real emission contributions are handled by a next-to-next-to-leading order generalization of the phase-space slicing method. We demonstrate the power of our technique by considering its application to various inclusive and exclusive observables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.