Abstract

Radiative corrections to electroweak parameters in technicolor theories may be evaluated by one of two techniques: either one estimates spectral function integrals using scaled QCD data, or one uses naive dimensional analysis with a chiral lagrangian. The former yields corrections to electroweak parameters proportional to the number of flavors and the number of colors, while the latter is proportional to the number of flavors squared and is independent of the number of colors. We attempt to resolve this apparent contradiction by showing that the spectrum of technicolor one obtains by scaling QCD data to high energies is unlikely to resemble that of an actual technicolor theory. The resonances are likely to be much lighter than naively supposed and the radiative corrections to electroweak parameters may by much larger. We also argue that much less is known about the spectrum and the radiative corrections in technicolor than was previously believed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.