Abstract

We study the nonlinear stability of electrohydrodynamic of a cylindrical interface separating two conducting fluids of circular cross section in the absence of gravity using electroviscous potential flow analysis. The analysis leads to an explicit nonlinear dispersion relation in which the effects of surface tension, viscosity and electricity on the normal stress are not neglected, but the effect of shear stresses is neglected. Formulas for the growth rates and neutral stability curve are given in general. In the nonlinear theory, it is shown that the evolution of the amplitude is governed by a Ginzburg–Landau equation. When the viscosities are neglected, the cubic nonlinear Schrödinger equation is obtained. Further, it is shown that, near the marginal state, a nonlinear diffusion equation is obtained in the presence of viscosities. The various stability criteria are discussed both analytically and numerically and stability diagrams are obtained. It is also shown that, the viscosity has effect on the nonlinear stability criterion of the system, contrary to previous belief.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.