Abstract

The model of the electro-optical effect, due to the reorientation of liquid crystal molecules from a pseudoisotropic to a homeotropic state, in a composite photonic structure with a liquid crystal filler, is elaborated. A composite (110) grooved silicon photonic structure for the middle infrared range was designed and fabricated on a silicon-on-insulator platform. Polarized reflection spectra, demonstrating the electro-optical effect, have been obtained by means of Fourier transform infrared microscopy. The relative shift of the band edge at half intensity in the region of 10μm was found experimentally to be 1.6% compared to 2.2% as predicted by theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.