Abstract

Smart films with transmittance switching capabilities based on thermal stimuli are widely used in many optoelectronic applications. Despite the development of stably switchable materials, transition temperature control and broadband stepwise transmittance switching remain challenging topics. Additionally, reduction of the energy consumption during switching is also required. Here, we introduce an electrothermally driven film with switchable transmittance produced by stacking paraffin-immobilized polydimethylsiloxane gel on a transparent heater based on an aligned Cu/Ni network. The film shows stepwise transmittance switching capability with extremely low power consumption because of the controlled melting point of paraffin and the high-efficiency transparent heater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.