Abstract

Living cells have the ability to detect electric fields and respond to them with directed migratory movements. Many proteomic approaches have been adopted in the past to identify the molecular mechanism behind this cellular phenomenon. However, how the cells sense the electric stimulus and transduce it into directed cell migration is still under discussion. Many eukaryotic cells react to applied electric stimulation, including Dictyostelium discoideum cells. We use them as model system for studying cell migration in electric fields, also known as electrotaxis. Here we report the protocols that we developed for our experiments. Our experimental outcomes helped us to characterize: (i) the memory that cells have in a varying electric field, which we defined as temporal electric persistence; and (ii) the accelerating motion of cells along their paths over the electric exposure time. We also report on the analysis of the role that conditioned medium factor (CMF), a protein secreted by cells when they begin to starve, plays in the mechanism of electric sensing. The results of this study can contribute to the understanding of the electrical sensing of cells and its transduction into directed cell migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.