Abstract

Providing high-quality somatosensory feedback from myoelectric prostheses to an upper-limb amputee user is a long-standing challenge. Various approaches have been investigated for tactile feedback, ranging from direct neural stimulation to noninvasive sensory substitution methods. However, only a few of studies evaluated the closed-loop performance, and real-time movement information of active prostheses still could not be transferred in the form of proprioceptive feedback so far. In current study, an integrated closed-loop prosthesis system consisted of two types of sensors, programmable electrical stimulator and multichannel array electrodes was presented. The grasping angle and corresponding grasping force of the single-freedom myoelectric prosthesis were simultaneously coded with spatial and mixed (spatial and intensity of sensation) coding scheme and tested in 15 able-bodied subjects. The experimental results demonstrated that the subjects were able to discriminate 4 types of object sizes, 3 kinds of different softness and 4 levels of grasping forces in relatively high correct identification rates (CIRs) (size: 87.5%, Softness: 94%, grasping force: 73.8%). The study outcomes and specific conclusions provide valuable guidance for the design of closed-loop myoelectric prostheses equipped with electrotactile feedback.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call