Abstract

The ion-mediated conduction and versatility of device fabrication of conducting polymers provide a route to the study of neural signaling. Patterned junctions of conducting polypyrrole have been electropolymerized on commercially available microelectrode arrays, with typical dimensions 200 mum between electrodes, each electrode being 30 mum in diameter. Tetrabutylammonium perchlorate or sodium p-toluenesulfonate were used as electrolyte/counterion in the organic solvent. Individual polypyrrole junctions, when synthesized and connected in a three-electrode configuration, exhibit current-switching behavior analogous to neural weighting. Junctions copolymerized with thiophene exhibit current rectification and the nonlinear current-voltage behavior requisite for complex neural systems (i.e., the activation function).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.