Abstract

The anodic oxidation of a substituted chalcone namely the (E)-1-(4-methoxyphenyl)-3-(3,4,5-trimethoxyphenyl) prop-2-enone (TMC) was investigated by different electrochemical techniques using a platinum working electrode in acetonitrile. On the cyclic voltammetry time scale, the TMC exhibited a single irreversible anodic peak around 1.4 V vs. Ag/AgCl and the coupling of the radical cations, issued from the first electron transfer, was the governing reaction near the electrode. Electrolysis at a constant potential revealed that an oligo o-phenylenevinylene was the main product of the anodic oxidation of TMC. The chemical structure of the isolated oligomer was elucidated by 1H, 13C NMR, and IR spectroscopy. Gel permeation chromatography indicated that the average chain length was about 5 units. In addition, the obtained oligomer was thermally stable up to 220 °C and exhibited a light emission in the indigo-blue region. Finally, a mechanism for the TMC electro-oligomerization was proposed on the basis of the electrochemical data and the theoretical calculation of the spin densities distribution for the TMC radical cation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.