Abstract

Here we report the electrodeposition of gold nanoparticles (AuNPs) onto porous GaN electrode obtained by photoelectrochemical etching planar GaN to fabricate a non-enzymatic hydrogen peroxide (H2O2) sensor. SEM images revealed porous GaN has uniformly high-porosity structure and the diameter of AuNPs is 5–16nm. The AuNPs/porous GaN electrode exhibited good electrocatalytic activity toward the reduction of H2O2 and performed as amperometric sensor for the detection of H2O2. The AuNPs/porous GaN electrode showed linear amperometric responses for H2O2 in the concentration range from 10 to 100μM with the sensitivity of 281.5μAmM−1. The limit of detection (LOD) is 2μM with a signal-to-noise ratio of 3. In addition, the AuNPs/porous GaN electrode exhibited good repeatability, reproducibility, selectivity and long-term stability for H2O2 detection, in the meanwhile, AuNPs showed excellent adhesive capacity to the porous GaN electrode, which was tested by continually sonicating the AuNPs/porous GaN electrode for 3h. Above results demonstrated this simply prepared H2O2 sensor has good practicability and is promising to measure the analyte in practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.