Abstract

Electrochemical hydrogenation of non-fossil resources to produce value added chemicals has great potential to contribute to realization of sustainable material supply. We previously demonstrated that TiO2 catalyzed electrochemical reduction of biomass-derivable α-keto acid in the presence of NH3 or NH2OH affords amino acids. In this work, we focused on oxalic acid, which is producible by chemical degradation of agro wastes, as a starting material for the electrosynthesis of an amino acid. We examined the electrocatalytic properties of various materials, including Cu, Pt, Ti foils, calcined Al, Co, Mo, Nb, Ni, Ti, V, W, Zr foils, and some TiO2 catalysts, by conducting linear sweep voltammetry (LSV) measurements, and found that Mo and Ti foil calcined at 450 °C show favorable catalytic features for the one-step glycine electrosynthesis from oxalic acid and NH2OH. Electrochemical reduction of oxalic acid at an applied potential of − 0.7 V using calcined Ti foil resulted in formation of glycine and glyoxylic acid oxime, i.e., intermediate of the glycine formation, with moderate Faradaic efficiency of 28 and 28%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.