Abstract

An amino acid side chain functionalized polyfluorene derivative poly[N-(9-fluorenylmethoxycarbonyl)-glycine] (P9FG) was facilely electrosynthesized and characterized, and the structure, properties and optical sensing application of the obtained polymer were described and discussed. The electropolymerization occurred at C2 and C7 positions of fluorene units, and amino acid side chain groups were not cleaved from polyfluorene backbone in mixed electrolytes of boron trifluoride diethyl etherate and dichloromethane. Thermal analysis demonstrated good thermal stability of P9FG. Fluorescent spectra indicated that P9FG was a good blue light emitting material that could be employed as optical sensors. The soluble P9FG as a turn-off fluorescent sensor could realize the detection of Fe3+, Cu2+ and Cr2O72-, respectively. In addition, P9FG as a turn-off ultraviolet sensor could realize the detection of Cu2+ while as turn-on ultraviolet sensors could also realize the determination of Fe3+ and Cr2O72-, respectively. All results indicate that P9FG is a promising candidate for optical sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.