Abstract

This work reported the electrostriction of polyurethane (PU) with different aggregations of hard segments (HS) controlled by dissimilar solvents: N,N-dimethylformamide (DMF) and a mixture of dimethyl sulfoxide and acetone denoted as DMSOA. By using atomic force microscopy and differential scanning calorimetry, the PU/DMSOA was observed to have larger HS domains and smoother surface when compared to those of the PU/DMF. The increase of HS domain formation led to the increase of transition temperature, enthalpy of transition, and dielectric constant (0.1 Hz). For the applied electric field below 4 MV/m, the PU/DMSOA had higher electric-field-induced strain and it was opposite otherwise. Dielectric constant and Young’s modulus for all the samples were measured. It was found that PU/DMF had less dielectric constant, leading to its lower electrostrictive coefficient at low frequency. At higher frequencies the electrostrictive coefficient was independent of the solvent type. Consequently, their figure of merit and power harvesting density were similar. However, the energy conversion was well exhibited for low frequency range and low electric field. The PU/DMSOA should, therefore, be promoted because of high vaporizing temperature of the DMSOA, good electrostriction for low frequency, and high induced strain for low applied electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.