Abstract

Accurate computational methods for predicting electrostatic energies are of major importance for our understanding of protein energetics in general for computer-aided drug design as well as for the design of novel biocatalysts and protein therapeutics. Electrostatic energies are of particular importance in such applications as virtual screening, drug design and protein-protein docking due to the high charge density of protein ligands and small-molecule drugs, and the frequent protonation state changes observed when drugs bind to their protein targets. Therefore, the development of a reliable and fast algorithm for the evaluation of electrostatic free energies, as an important contributor to the overall protein energy function, has been the focus for many scientists over the past three decades. In this review we describe the current state-of-the-art in modeling electrostatic effects in proteins and protein-ligand complexes. We focus mainly on the merits and drawbacks of the continuum methodology, and speculate on future directions in refining algorithms for calculating electrostatic energies in proteins using experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.