Abstract

The expeditious growth of self-healable multifunctional electronics poses a challenge on power devices to acquire fast autonomous self-healing of solids with efficient electrical recovery. However, realizing this goal remains elusive due to the sluggish dynamics of bonded ions. Herein, we overcome this limitation by introducing hydrogen bonding cluster and non-bonding electrostatic centers in solids to accelerate ion dynamics via more delocalization centers that can switch healing reformations at various physical states. As such, the matrix can retain fast autonomous self-healing characteristics in dry, aqueous, and freezing states via diffusion-less self-healing mechanism. The self-healable hydrogel renders a triboelectric nanogenerator on contact with skin with a power density of 11.1 W m–2 at a matching impedance as low as 9 MΩ, retaining 7.28 W m–2 in aqueous and 7.04 W m–2 freezing states, which outperforms all the reported self-healable induction devices. This diffusion-less approach of intrinsic switchable interaction is promising for robotics, sportswear, all weather prosthetics, cryogenics, and harsh weather power back-up applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call