Abstract

It is challenging to develop lightweight and efficient frequency-selective microwave absorption materials due to the trade-off between impedance matching and microwave attenuation ability. This study proposes a multiple heterointerfaces engineering strategy via electrostatically assembling to construct Fe3O4@SiO2/MXene 3D interlayer structure, which fully exerted the synergistic effect of dielectric-magnetic components. The 3D interlayer heterostructure achieves good impedance matching due to electromagnetic coupling and extended microwave propagation path. Simultaneously, massive charge transfer and redistribution at multiple heterointerfaces embedded in this structure boost the polarization relaxation and dielectric loss ability. Consequently, the prepared nanocomposites exhibit remarkable Ku-band microwave absorption efficiency (−60.9 dB at a thickness of 1.0 mm), and have demonstrated valid practicality via Tesla wireless transmission shielding experiments. This study opens exciting possibilities for progress in the structural design, facile preparation and practical application of high-performance Ku-band microwave absorption materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.