Abstract

We developed dual-gated graphene transistors in which the transistor polarity (n-type or p-type) is electrostatically reversible by the gate bias of one of the top gates. In this device, a channel is defined as the region between a pair of top gates, where graphene is irradiated by an accelerated helium ion beam to form a defect-induced transport gap. This device features not only a large current ON–OFF ratio of four orders of magnitude but also unipolarity of transistors, which would otherwise be ambipolar. We also show how these polarity-reversible transistors can be used in logic circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.