Abstract

Raman spectroscopy and X-ray diffraction are used to investigate the influence of surface charges on the structure of ionizable lipid membranes of dimyristoylmethylphosphatidic acid. The membrane surface charge density is regulated by varying the pH of the aqueous phase. Changes of the conformational order of the lipid chains are determined from the intensity of the CC stretch chain vibrations around 1100 cm −1 in a lipid Raman spectrum. In going from an electrical neutral to a negatively charged membrane, the conformational order is reduced by 5% in the ordered and by 9% in the fluid membrane phase, corresponding to 0.6 and 0.8 CC bonds, respectively, which change from a trans to a gauche conformation. The electrostatically induced conformational change is mainly concentrated at the lipid chain ends as indicated by the spectral variations of the 890 cm −1 CH 3 rocking band of the chain termini. The X-ray diffraction experiments show that increasing the surface charge density in the ordered membrane phase leads to a lateral expansion of the packing of the lipid polar groups, whereas the packing of the lipid chains in a plane perpendicular to the chain axes remains constant, indicating an increase of the tilt of the lipid chains from δ = 10° (pH 3) to δ = 27° (pH 9).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.