Abstract

The use of background molecular charge to incorporate environmental effects on a molecule or active site is widely employed in quantum chemistry. In the present article we employ this practice in conjunction with many-body expansions. In particular, we present electrostatically embedded two-body and three-body expansions for calculating the energies of molecular clusters. The system is divided into fragments, and dimers or trimers of fragments are calculated in a field of point charges representing the electrostatic potential of the other fragments. We find that including environmental point charges can lower the errors in the electrostatically embedded pairwise additive (EE-PA) energies for a series of water clusters by as much as a factor of 10 when compared to the traditional pairwise additive approximation and that for the electrostatically embedded three-body (EE-3B) method the average mean unsigned error over nine different levels of theory for a set of six tetramers and one pentamer is only 0.05 kcal/mol, which is only 0.4% of the mean unsigned net interaction energy. We also test the accuracy of the EE-PA and EE-3B methods for a cluster of 21 water molecules and find that the errors relative to a full MP2/aug'-cc-pVTZ calculation to be only 2.97 and 0.38 kcal/mol, respectively, which are only 1.5% and 0.2%, respectively, of the net interaction energy. This method offers the advantage over some other fragment-based methods in that it does not use an iterative method to determine the charges and thus provides substantial savings for large clusters. The method is convenient to adapt to a variety of electronic structure methods and program packages, it has N(2) or N(3) computational scaling for large systems (where N is the number of fragments), it is easily converted to an O(N) method, and its linearity allows for convenient analytic gradients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.