Abstract

We utilize a nonlinear, dynamic finite element model coupled with a finite deformation viscoelastic constitutive law to study the inhomogeneous deformation and instabilities resulting from the application of a constant voltage to dielectric elastomers. The constant voltage loading is used to study electrostatically driven creep and the resulting electromechanical instabilities for two different cases that have all been experimentally observed, i.e., electromechanical snap-through instability and bursting drops in a dielectric elastomer. We find that in general, increasing the viscoelastic relaxation time leads to an increase in time needed to nucleate the electromechanical instability. However, we find for these two cases that the time needed to nucleate the instability scales with the relaxation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.