Abstract

Precise control over interparticle interactions is essential to retain the functions of individual components in a self-assembled superstructure. Here, we report the design of a multifunctional bioplasmonic network via an electrostatically directed self-assembly process involving adenosine 5'-triphosphate (ATP). The present study unveils the ability of ATP to undergo a long-range self-assembly in the presence of cations and gold nanoparticles (AuNP). Modelling and NMR studies gave a qualitative insight into the major interactions driving the bioplasmonic network formation. ATP-Ca2+ coordination helps in regulating the electrostatic interaction, which is crucial in transforming an uncontrolled precipitation into a kinetically controlled aggregation process. Remarkably, ATP and AuNP retained their inherent properties in the multifunctional bioplasmonic network. The generality of electrostatically directed self-assembly process was extended to different nucleotide-nanoparticle systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.