Abstract

Lithium ion batteries (LIBs) are promising candidates for energy storage, with the development of novel anode materials. We report the fabrication of Fe3O4 nanoparticles/graphene foam via electrostatic assembly and directly utilize it as a binder-free anode for LIBs. Owing to the integrated effect of the well-dispersed Fe3O4 nanoparticles and the conductive graphene foam network, such composite exhibited remarkable electrochemical performances. It delivered a large reversible specific capacity reaching to ∼1198 mAh g-1 at a current density of 100 mA g-1, a good rate capacity, and an excellent cyclic stability over 400 cycles. This work demonstrated a facile methodology to design and construct high-performance anode materials for LIBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.