Abstract

The linear and nonlinear excitation of arbitrary amplitude ion-acoustic (IA) solitary waves in a magnetized plasma comprising two-temperature electrons and cold ions are studied. The oblique propagation properties of two possible modes (in the linear regime) are investigated. It is found that the electron superthermality reduces the phase velocities of both modes, whereas obliqueness leads to an increase in the separation between two modes. In the nonlinear regime, an energy-like equation describes the evolution of IA solitary waves in the present model. The combined effects of the electron superthermality, magnitude of magnetic field, obliqueness and electron population are incorporated in the study of the existence domain of solitary waves and the soliton characteristics. It is shown that the small values of the hot electron population shift the permitted interval of Mach number to the lower values. Both compressive and rarefactive solitary structures are found to exist in the presence of two temperature electrons. The present investigation contributes to the physics of electrostatic wave structures in Saturn's magnetosphere in which two temperature electrons with kappa distribution exist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call